
Extracting low-precision floating-point adders
from embedded hard FP DSP Blocks on FPGAs

Bogdan Pasca
Intel Corporation, France
bogdan.pasca@intel.com

Martin Langhammer
Intel Corporation, UK

martin.langhammer@intel.com

Abstract—This work presents a set of techniques that al-
low implementing low-precision floating-point adders based
on the embedded hard FP DSP Blocks available in con-
temporary Intel FPGAs. The presented architectures exploit
the properties of these formats during exponent handling
to obtain efficient implementations in terms of logic uti-
lization. For instance, a half-precision floating-point adder
implementation only requires 1 DSP Block and no extra logic.
The newly available IEEE-754 compliant implementations
can then be used as drop-in replacements in designs making
use of these exact floating-point adder blocks. We present
the case of a floating-point FFT implementation that benefits
from these proposed architectures in order to substantially
reduce logic utilization at the expense of using more DSP
blocks.

Index Terms—FPGA, DSP, floating-point, adder, extraction,
mapping, half-precision, bfloat16, FP-DSP

I. INTRODUCTION

Contemporary FPGA devices now include thousands
of DSP Blocks in their architecture. The DSP Blocks
have also evolved from fixed-point multiply-add-based
functionality to include floating-point (FP) arithmetic
support: single-precision (SP) multiply-add support was
introduced in Arria 10 [1] and half-precision-based sum-
of-products arithmetic has been included in Agilex de-
vices [2]. In this work we are interested in generating
half-precision (HP) adder architectures that utilize these
novel FP DSP Block features. Our goal is to provide
implementations that produce correctly rounded results
for the round-to-nearest (tie breaks to even) rounding
mode, but also for the relaxed accuracy faithful rounding
mode. In all cases we diverge from the IEEE-754 2008
standard [3] by focusing on implementations that flush
subnormals to zero on both input and output - which is
a common practice in FPGA designs.

The primary goal is to provide better mappings to
FP formats supported by the Agilex DSP Block (that
supports several low-precision arithmetic modes), with a
secondary goal of support architectures based on SP FP
addition which can also be used on previous generation
devices such as Arria10 and Stratix10.

The main contributions of these work are two classes
FP adder architectures: (i) a specific HP adder based
on the Agilex DSP Block, and (ii) low-precision adder

Agilex DSP Block

yH

zH

x

zL

yL

Fig. 1: Agilex DSP Block in low-precision FP mode

implementation for 5-bit exponents on SP Hard FP DSP
Blocks available in all contemporary Intel FPGA devices.

This paper is organized as follows: after a brief back-
ground on FPGA DSP Block features relevant to this
work, we introduce an Agilex-specific HP adder map-
ping in Section III-A. Next, a second HP architecture is
presented targeting SP DSP Blocks in Section III-B. We
present area utilization numbers for these proposed ar-
chitectures in Section IV to finally conclude in Section V.

II. BACKGROUND

Here we summarize the main features of the Agilex
DSP Block [2] . We mainly focus on the reduced-precision
FP modes, which are the topic of the following sections.
When configured in one of these modes the Agilex DSP
includes a pair of low-precision FP multipliers, together
with a low-precision FP adder that is used to sum
these products. The output of the low-precision adder
is then fed to SP adder which receives its second input
either from general-purpose logic or from a neighboring
DSP Block. The DSP block supports 3 reduced-precision
modes: bfloat16 [4], HP, and bfloat16+ (a hybrid between
bfloat16 and HP). Here we restrict our focus to the HP
mode.

In HP mode, the 4 inputs (yH, zH, yL, zL) of the 2
HP multipliers arrive on 16 bits and encode FP values
according to the binary16 representation. A DSP Block
mode setting then allows to alter the behavior of the
internal multiply-add operation. In flushed mode, HP
subnormal inputs provided on (aH, bH, aL, bL) will
be flushed to zero. The multipliers output a correctly
rounded HP product which flushes subnormals to zero



112

XOR[4]

[7]

[3:0]

[22:13]

fracD

8

expD

signD

S
HP

DSP Block

Agilex

HP

5a

b

+1

+1

SP

HP

HP

HP

HP

SP

−0

Fig. 2: Correctly rounded HP implementation based on
the Agilex DSP Block

on output (after rounding). The subsequent HP adder
is similarly configured to flush subnormals to zero on
output. The result of the HP adder will then be converted
to SP and provided as an input to the SP DSP Block
output.

Similar to Arria 10 [1] and Stratix 10 [5] devices, the
Agilex DSP Block can also be configured in SP multiply-
add mode. In this mode too subnormals are flushed to
zero on both input and output.

III. ARCHITECTURES

A. Half-precision – Agilex specific

A HP adder is constructed starting from the DSP Block
on Agilex devices by using the FP16MULTADD_SUM
flushed mode. In this mode the DSP Block computes:

D = (yH · zH + yL · zL) + x

where yY , yL, zH and zL are all HP values, and x is
in SP.

The desired operation is:

S = (a+ b)

where both a and b are HP values. The first step is
mapping this operation to the DSP Block mode:

• yH = a, zH = +1 (HP)
• yL = b, zL = +1 (HP)
• x = −0 (SP).
The mapping contains a subtlety which is that the

value added to the sum of products is −0. This is
required in order to propagate the correct sign for zero.
For instance, if the sum of products (yH · zH + yL · zL)
returns −0, then if the value added on the the x input
would be +0, the SP adder sum would be +0, which
would be incorrect. Consequently, the value −0 is used
so to preserve the sign of the second adder input.

The DSP Block output D is now a SP value containing
a 10-bit populated fraction. The fraction is extracted di-
rectly from D[22:13]. However, the biased 8-bit exponent
eb

D[30:23] needs to be converted a 5-bit HP exponent.
For SP the exponents are stored biased:

eb
D = eu

D + 127.

TABLE I: Legal exponent values for the HP addition

eb
D eu

D Binary Class eb
D-112 Binary Goal

255 - 1111 1111 Inf/NaN 143 1000 1111 1 1111
142 15 1000 1110 Regular 30 0001 1110 1 1110
141 14 1000 1101 Regular 29 0001 1101 1 1101

...
128 1 1000 0000 Regular 16 0001 0000 1 0000
127 0 0111 1111 Regular 15 0000 1111 0 1111
126 -1 0111 1110 Regular 14 0000 1110 0 1110

...
114 -13 0111 0010 Regular 2 0000 0010 0 0010
113 -14 0111 0001 Regular 1 0000 0001 0 0001

0 - 0000 0000 Zero -112 1001 0000 0 0000

For HP, the exponent stored is:

eb
S = eu

S + 15.

Knowing that eu
S == eu

D, in order to compute eb
S from

eb
D one needs to subtract 112 = 127− 15 from eb

D:

eb
S = (eb

D − 127) + 15

= eb
D − 112.

We next check the effects of this exponent subtraction
on the exception case encodings. For infinity and NaN
eb

D = 255. Upon subtracting 112 we obtain:

eb
S = 255− 112 = 143

= 10001111 (in binary encoding).

For zero eb
D = 0. Upon subtracting 112 we obtain:

expbiased
S = 0− 112 = −112

= 10010000(in binary encoding).

In both cases the lower 4-bits of the representation
already match the desired encoding, and bit 5 needs
inverting.

For the general case, since the SP adder simply re-
encodes the HP exponents, only a very small expo-
nent range (corresponding to the HP unbiased exponent
range [-14, +15]) will actually be used. These legal expo-
nent values are depicted in Table I.

It can be observed that the lower 5 bits of eb
D − 112

match exactly the desired output encoding shown in
column Goal for all regular exponent values. Moreover,
for the special cases the lower 4 bits also match the goal,
but the fifth bit (highlighted in red) is negated. We use
the fact that bit index 7 from the same subtraction will
be 1 when these bits are flipped, and will be 0 for all
regular exponent values. Consequently, we can use a
XOR between bits index 4 and 7 of eb

D − 112 to produce
the 5th exponent bit. The architecture depicting these
operations is presented in Figure 2.

The implementation may be further optimized based
on the observation that the goal exponent representation
can be composed from concatenating eb

D MSB (index 7)
with the four LSBs (index 3 to 0) to create the final
exponent. This new architecture is depicted in Figure 3.



[22:13]

fracD

signD

DSP Block

Agilex

HP

a

b

+1

+1

SP

HP

HP

HP

HP

SP

−0

expD[3:0]

expD[7]
5

S
HP

Fig. 3: Correctly rounded HP implementation based on
the Agilex DSP Block using observation

B. Half-precision – SP Hard FP general solution

A generic HP adder architecture that utilizes the SP
DSP Block present in Arria 10, Stratix 10 or Agilex
devices involves in the first step transforming the HP
inputs to SP. On the fraction side this is achieved by
zero padding (to the right) – with a string of 13 zeros.

The exponent conversion may be implemented by
means of a table lookup. A total of 8 LUT5s are required
per exponent conversion, for a total of 4 ALMs (basic
logic cell in modern Intel FPGA devices) per exponent.
We denote by xHP the HP variable, and by xSP the SP
value. Instead of performing a traditional conversion,
where xHP == xSP, we will apply a conversion that
allows us to benefit from some of the exception handling
of the SP adder. In particular, we preserve the special
case zero mapping and we map the entire HP range
to the ’top’ of the SP exponent range. The mapping is
detailed in Algorithm 1 and has the advantage that it
allows benefiting from the overflow exception handling
of the SP FP adder.

The biased exponent range for HP is {0, 31} where the
value 0 encodes the special case for zero (or subnormal
if supported), and the value 31 encodes either infinity or
NaN, depending on the mantissa contents. For SP, the bi-
ased exponent range is {0, 255}, with 0 and 255 similarly
encoding the special cases. Our proposed mapping will
map the range {1, 31} to {225, 255} and map {0} to {0}.
For regular values the biased exponent difference will be
224 = 255 - 31, which corresponds to a classical exponent
difference of 112.

Once the SP addition is performed, we can obtain
correct rounding for RNE on 8-bit exponents and 10-
bit fractions (generically the fraction can be anywhere
up to 11 bit) by simply rounding the SP sum to HP.
This can be guaranteed since the sum cannot be close
to a HP midpoint when actual SP rounding (informa-
tion loss) has happened. Next, we need to perform the
’reverse’ mapping to the HP format. For the reversed
mapping, we need to subtract 224 from the computed
8-bit exponent. Here we need to note that the minimum
8-bit exponent value that can be observed will be 224-
10=214 (smallest subnormal). Instead of performing the
subtraction, and applying potential fixes for the special

TABLE II: Potential exponent values in the SP Addition

Exponent Value Binary Encoding
255 1111 1111

... 111X XXXX
224 1110 0000
223 1101 1111

... 1101 XXXX
215 1101 0111
214 1101 0110 (smallest denormal, half)

0 0000 0000

cases, we revert again to a tabulation-based approach.
For this we list in Table II the potential exponent values
that are valid at the output of the FP32 adder.

We note that by observing the highlighted bottom 6
bits of this exponent, we can compute by tabulation
the 5-bit HP exponent. Note that the only combination
where all 6 bottom bits are ’000000’ corresponds to 0,
since in binary the exponent values >= 214 will have the
lower 6 bits > 0. Consequently, we can deterministically
decide on the exponent update. Since we will fill-up a 64-
element LUT6, we will in fact cover all exponents down
to (biased) 128 + 64. Some of the input combinations
will not be valid - and these are set to zero. The lookup
table indexed by the 6 LSBs and which outputs the 5-bit
exponent is populated in Algorithm 2.

The architecture diagram implementing this adder is
depicted in Figure 4.

IV. RESULTS

We have compared the synthesis results for the pro-
posed architectures against state-of-the-art logic-based
implementations available with the vendor tools. In
particular, we have used the Intel Quartus Prime Pro
22.4 [6] to obtain the resource utilization post place-and-
route and we have used the FP_FUNCTIONS Megacore
IP [7] to generate the logic-based HP implementations.
We note that we have used fastest speed-grade devices
for this test – for both Agilex and Stratix 10, and we have
set a target frequency of 500 MHz in FP_FUNCTIONS.
For all comparisons we list the pipeline latency, number
of ALMs, the number of DSP blocks alongside the Ratio
column that tells how many ALMs are traded for a

ALGORITHM 1: LUT1: 5-bit to 8-bit exponents
Output: LUT1 (index by 5-bit exponent)
LUT[0] = 0;
for i from −14 to 16 do

LUT1[i+15] = i + 255 - 16;
end for

ALGORITHM 2: LUT2: 8-bit to 5-bit exponents
Output: LUT2 (indexed by 6-bit exponent LSB)
for i from 0 to 63 do

LUT2[i] = Max(0, i + 128 + 64 -224);
end for



padding

LUT1
Exp

wF

5 8
a

23

SP

padding

LUT1
Exp

wF

5 8
b

23

SP
[21−wF:0]

OR

sticky

Rnd
guard[22−wF]

round[23−wF]

[30:23−wF] expFrac

[31]

8+wF

exp

sign

[5:0]

frac wF

5
S

DSP Block
SP

LUT

Exp

LUT2
Back

Fig. 4: Correctly rounded wE=5 wF<=11 implementation (HP included) based on SP DSP Blocks

TABLE III: Half-precision Adder Synthesis results

Arch Target Latency ALMs DSPs Ratio
Proposed-A1 Agilex 5 5 1 147
Proposed-A2 Agilex 5 0 1 152

Logic 500MHz, -1 11 152 0 -
Proposed-B Statix10 6 26 1 174

Logic 500MHz, -1 16 200 0 -

DSP (comparison made against the logic-only baseline
implementation).

The comparison results are presented in Table III.
First, for the Agilex device we have synthesized both
architectures discussed in Section III-A: we denote by
Proposed-A1 the architecture depicted in Figure 2 and by
Proposed-A2 the architecture from Figure 3. As expected,
A2 outperforms A1 since it uses absolutely no logic.
They both provide a desirable tradeoff (152 ALMs /
1 DSP) which is important since recent devices now
contain thousands of DSP Blocks.

In the case of the HP architecture based on a SP DSP
Block the results are reported for a Stratix 10 device.
It can be seen in this case that the extra logic used in
Figure 4 amounts to 26 ALMs. This is still significantly
less than the 200 ALMs reported for the logic-only HP
implementation on this device. It must be noted that
the ALM difference between the Agilex and Stratix 10
implementations (152 vs 200) is attributed to the latency
difference (11 vs 16) which is a consequence of Agilex
being faster than its Stratix 10 counterpart; in order
to meet the same target frequency of 500MHz, more
pipelining stages are required on the slower device thus
increasing resource utilization.

Finally we report in Table IV resource utilization re-
sults for an 8K-point FFT design implemented in DSP
Builder Advanced [8] from the a sample FFT design
presented in Chapter 6.2.5. and which targets an Agilex
device. The HP adders in this design use the Proposed-
A2 architecture in Table III. It can be observed from this
table that the ALM utilization has dropped by nearly 6K
ALMs at the expense of 32 additional DSPs, for a ratio of
approximately 187 ALMs per DSP. This is slightly higher
than the reported ratio of 152 ALMs/DSP from Table III .
This again is explained by the significantly lower latency

TABLE IV: 8K FFT Synthesis results on Agilex

Architecture ALMs M20K DSPs
Old 8116 62 12

Proposed 2183 46 44

introduced by these adders which has a compound effect
in a larger design (fewer synchronization registers are
required between parallel paths in the design).

V. CONCLUSIONS

In this work we have shown how FPGA DSP Blocks
supporting certain FP arithmetic functions can be used
to implement HP FP adders using only a small amount
of extra logic - if any. In particular, we have shown two
sets of architectures: one targeting the sum-of-binary16
mode from Agilex devices, and a second targeting DSP
Blocks that implement SP addition. For the first set of
architectures, we have shown that HP addition can be
implemented with no additional logic cost, whereas for
the generic architecture we have shown that a total of
26 ALMs are required in addition to the DSP Block for
the implementation.

REFERENCES

[1] Intel Arria R©10 Device Overview, 2018, https://www.intel.com/
content/dam/altera-www/global/en_US/pdfs/literature/hb/
arria-10/a10_overview.pdf.

[2] Intel Agilex Variable Precision DSP Blocks User Guide, 2019,
https://www.intel.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf.

[3] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,
pp. 1–58, 29 2008.

[4] Intel Corporation, “BFLOAT16 - Hardware Nu-
merics Definition,” 11 2018. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/
40/8b/bf16-hardware-numerics-definition-white-paper.pdf

[5] Intel Stratix R©10 GX/SX Device Overview, 2018, https:
//www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/hb/stratix-10/s10-overview.pdf.

[6] “Intel Quartus Prime Software,” 2023, https://www.
intel.com/content/www/us/en/products/details/fpga/
development-tools/quartus-prime.html.

[7] “FP_FUNCTIONS Intel FPGA IP or Floating Point Functions
Intel FPGA IP Core,” 2023, https://www.intel.com/
content/www/us/en/docs/programmable/683750/20-1/
fp-functions-or-floating-point-functions-72394.html.

[8] “DSP Builder for Intel FPGAs (Advanced Blockset): Handbook,”
2023, https://www.intel.com/programmable/technical-pdfs/
683337.pdf.


